MS in AEROSPACE ENGINEER| UNIVERSITY OF TEXAS AT AUSTIN BS in AERONAUTICAL ENGINEER| VELTECH UNIVERSITY

ganeshyng789@gmail.com

+1 737-326-0702

Austin, TX, USA

linkedin.com/in/ganesh-borde-928701217

ganesh-borde.github.io/

18650 Battery Pack Cooling Using Serpentine Pipe

- EV Battery pack cooling using serpentine pipe -used in Tesla
- Heat released @ $4C = 74163 W/m^3$
- · Study effect of single channel and multi channel 2,4, and 8

- ANSYS water tight geometry meshing
- Ansys Fluent- Steady state, Conjugate heat transfer, and Multi zone
- Flow is laminar and solving energy
- Multiple Iteration

Results

- · Using multiple channels decreased MTD (Maximum temperature diff)
- · But in the cost of increasing fluid temperature
- · Adding more channels reduces overall fluid mass rate, so no change in MTD

Analytical & CFD-FEA Study of Chip Cooling with Optimized Heatsink Design.

- · Analytical Thermal Resistance Model (RM) for a chip-heatsink-fan system by
- $Q_{chip} = 30W$, $T_{amb} = 20$ °C.
- DOE varying thickness and no. of fins to maintain $T_{jun} = 85$ °C

How?

- Ansys Icepak -uses Fluent for flow and FEA for structure
- · Inbuilt automatic fine structured mesh
- Turbulent, steady state
- PyAEDT for DOE by varying the location of chip and heat sink
- Grille with free area ratio of 0.9

Results

- · Thickness and no.of fins have influence on required cooling from analytical model.
- Influence on location of chip-heatsink using PyAEDT Icepak results
- Results from simulations & RM had small differences in temperatures and velocities, due to simplicity in RM.

MS in AEROSPACE ENGINEER| UNIVERSITY OF TEXAS AT AUSTIN BS in AERONAUTICAL ENGINEER| VELTECH UNIVERSITY

Design of Scramjet Inlet for Shock on Lip Condition at Low Mach Number by Using CFD

What?

- Engine for high speed flights with only 2 engines, Turbo-Ram and Scramjet
- At low Mach number 4&5 achieving minimum ignition temperature (MIT) by compression is challenging
- · Using shock on lip for flow spillage and 2 ramps by varying angles for compression.

How?

- · Using Hypersonic aerodynamics, designed analytical geometry and modeled in Catia.
- · Block-Structured mesh using Ansys meshing
- · Ansys Fluent- RANS, Steady state, Densitybased solver and ideal gas
- The Advection Upstream Splitting Method (AUSM) for shock capture

- · Initial geometry doesn't give required MIT for JP-7 fuel.
- · Varying angles of ramps by different combination got desired MIT for combustion in engine.
- · Shock-on-lip observed in all simulations

Design and analysis of small-scale axial flow pump impeller using CFD (Ansys CFX)

	Specification				
	Revolution per Minute (RPM)	10000			
Pump	Discharge	5[L/Min]			
	Working Fluid	Water			
	Desired Head	1000[Kg/m ³]			
	Density of working fluid	1[m]			
Blade	Туре	Helical			
	Total length	43.5[mm]			
	Tip Diameter	20[mm]			
	Hub Diameter	10[mm]			
	Blade Height	5[mm]			
	Blade Thickness	1[mm]			

What?

- Mini axial-flow pump for small-scale use: chemical dosing, blood pumps, dispensers
- Analyzed 6 impeller designs with: Wrap angles: 240°, 300°, 360°
- Leading edge shapes: circular and parabolic

- Designed in CATIA, domains split into suction, pump, and delivery.
- Meshed in ANSYS with inflation near impeller walls for boundary layer accuracy
- Simulated in ANSYS CFX, steady-state, 10000 rpm, 5 L/min flow
- Used k-ε turbulence model, sliding interfaces between rotating and stationary domains

Results

- 300° wrap angle + parabolic edge gave best total head and smooth flow
- · Parabolic edges minimized flow separation at leading
- · Head increased as discharge decreased, confirming
- Improved pressure and velocity distribution observed near blade surfaces

MS in AEROSPACE ENGINEER UNIVERSITY OF TEXAS AT AUSTIN BS in AERONAUTICAL ENGINEER| VELTECH UNIVERSITY

ganeshyng789@gmail.com

+1 737-326-0702

Austin, TX, USA

linkedin.com/in/ganesh-borde-928701217 ganesh-borde.github.io/

github.com/Ganesh-Borde

Measurement of Flame Properties in CFD Simulated Premixed Cylindrically Expanding Flames

What?

- · Combustion research on alternate premixed fuel needs, a lot of Numerical studies
- Hydrogen-Air Combustion in Von Karman Combustion Chamber (VKCC)
- · Creating a framework to calculate flame properties efficiently.

$\frac{\partial \rho}{\partial t} + \nabla$	$\cdot \left(\rho \mathbf{u} \right) = 0,$	$\frac{\partial}{\partial x}$

$$\frac{\partial(\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = -\nabla p + \nabla \cdot \boldsymbol{\sigma},$$

$$\begin{split} \frac{\partial \rho h}{\partial t} + \nabla \cdot (\rho h \mathbf{u}) &= -\nabla \cdot \mathbf{q}, \ \, \frac{\partial \rho Z}{\partial t} + \nabla \cdot (\rho u Z) = \nabla \cdot (\rho D_Z \nabla Z) + \dot{\omega}, \\ \mathbb{K} &= \frac{1}{r} \frac{dr}{dt}. \qquad \qquad S_f = S_L - \mathcal{L} \mathbb{K}, \end{split}$$

- · Usually 3D spherical solver are usedexpensive. Here 1D cylindrical mapped solver is used, computationally efficient.
- Pre analysis using Cantera 1D-Planar
- Using Mixture-average model for diffusion velocity. Inhouse code NGA-HPC, Parallel, Soret effect included

			7				
Mixture		MA		MA-MC		MA-MA	
Name	p_0 (atm)	S_L (m/s)	\mathcal{M}^b	S_L (m/s)	\mathcal{M}^b	S_L (m/s)	\mathcal{M}^b
D80E95	1	3.6894	2.7282	3.772	4.4887	3.6990	3.0011
D82E90	1	3.2013	2.6941	3.2797	4.2494	3.2156	2.9735
D84E90	1	2.8169	2.6861	2.8856	4.2689	2.8318	3.0155
D89E65	1 2 3	1.0863 1.0273 0.9626	0.9635 0.9010 0.8340	1.0986 1.0427 0.9744	1.2127 1.1986 1.1514	1.0986 1.0381 0.9714	$\begin{array}{c} 1.2127 \\ 0.9708 \\ 0.9051 \end{array}$

Results

- Parameters interested Flame speed, Markstein number and length
- · NGA results are validated with experimental results.
- NGA is applied for premixed Hydrogen

Plasma Fluid Models for DC Glow Discharges using the Drift-Diffusion Model (FVM)

$$\frac{\partial n_{s}}{\partial t} + \nabla \cdot \Gamma_{s} = S$$

$$\Gamma_e = -\mu_e n_e E - D_e \nabla n_e$$
, $\Gamma_i = \mu_i n_i E - D_i \nabla n_i$

$$S = \bar{\alpha} \left| \Gamma^{\mathsf{drift}} \right| = \bar{\alpha} \mu_e |E| n_e$$

 μ_e , D_e and $\overline{\alpha}$ are function of |E|

$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}$$

$$E = -\nabla \phi$$
 , where $\rho = (n_i - n_e)e$

Cathode

$$\boldsymbol{\succ} \quad \nabla n_i = 0, \nabla n_e = 0$$

$$\Rightarrow \phi = \phi_C$$

$$\Gamma_i = \frac{1}{4} \nu_i n_i + n_i \mu_i E$$
where $\nu_i = \sqrt{8k_b T_i / \pi m_i}$

where
$$v_j = \sqrt{6\kappa_b}$$

$$\qquad \qquad \Gamma_e = \frac{1}{4} \ \nu_e n_e \pm \gamma \Gamma_i$$

Anode

$$\nabla n_i = 0, \nabla n_e = 0$$

$$\phi = \phi_A$$

$$\Gamma_i = \frac{1}{4} \nu_i n_i$$

$$\Gamma_e = \frac{1}{4} \nu_e n_e \pm \gamma \Gamma_i$$

$$ightharpoonup \Gamma_e = \frac{1}{4} v_e n_e$$

How?

- **FVM**
- Explicit time discretization ODE45
- Convective term Γ^{drift} using Lax-Friedrich Flux Splitting and WENO5 for discretization
- Dirichlet B.C to solve the Electric Potential results a sparse matrix
- $\Delta t = 1 \text{ ns, } t = 6 \mu s,$
- $\Delta x = 1 \,\mu\text{m}, L = 1 \,\text{cm}$

Results

• Captured the sheaths and number densities

What?

- Drift diffusion model, very common model in plasma physics to study number density of electron and ions.
- Applications: Plasma Confinement, Glow Discharges and Ionization Fronts, Electric Probe Diagnostics, Semiconductor Plasmas, Plasma Thrusters